YOU SAID:
The six trigonometric functions can be defined as coordinate values of points on the Euclidean plane that are related to the unit circle, which is the circle of radius one centered at the origin O of this coordinate system. While right-angled triangle definitions permit the definition of the trigonometric functions for angles between 0 and {\textstyle {\frac {\pi }{2}}}{\textstyle \frac{\pi}{2}} radian (90°), the unit circle definitions allow to extend the domain of the trigonometric functions to all positive and negative real numbers.
INTO JAPANESE
6つの三角関数は、この座標系の原点Oを中心とする半径1の円である、単位円に関連するユークリッド平面上の点の座標値として定義できます。直角三角形の定義では、0〜{\ textstの角度の三角関数の定義が許可されます
BACK INTO ENGLISH
The six trigonometric functions can be defined as the coordinates of a point on the Euclidean plane associated with the unit circle, which is a circle of radius 1 centered on the origin O of this coordinate system. The definition of a right triangle allows the definition of a trigonometric function of angles from 0 to {\ textst
INTO JAPANESE
6つの三角関数は、単位円に関連付けられたユークリッド平面上の点の座標として定義できます。単位円は、この座標系の原点Oを中心とする半径1の円です。直角三角形の定義により、0から{\ textstまでの角度の三角関数を定義できます
BACK INTO ENGLISH
The six trigonometric functions can be defined as the coordinates of a point on the Euclidean plane associated with the unit circle. The unit circle is a circle with a radius of 1 centered on the origin O of this coordinate system. With the definition of a right triangle, you can define trigonometric functions for angles from 0 to {\ textst
INTO JAPANESE
6つの三角関数は、単位円に関連付けられたユークリッド平面上の点の座標として定義できます。単位円は、この座標系の原点Oを中心とする半径1の円です。直角三角形の定義により、0から{\ textstまでの角度の三角関数を定義できます
BACK INTO ENGLISH
The six trigonometric functions can be defined as the coordinates of a point on the Euclidean plane associated with the unit circle. The unit circle is a circle with a radius of 1 centered on the origin O of this coordinate system. With the definition of a right triangle, you can define trigonometric functions for angles from 0 to {\ textst
That didn't even make that much sense in English.