YOU SAID:
The basic idea of Integral calculus is finding the area under a curve. To find it exactly, we can divide the area into infinite rectangles of infinitely small width and sum their areas—calculus is great for working with infinite things!
INTO JAPANESE
積分計算の基本的な考え方は、曲線の下の面積を見つけることです。正確に見つけるために、領域を無限に小さな幅の無限の長方形に分割し、それらの領域を合計できます。計算は無限のものを扱うのに最適です!
BACK INTO ENGLISH
The basic idea of integral calculation is to find the area under the curve. To find it accurately, you can divide the area into an infinite rectangle of infinitely small width and add the areas together. Calculations are great for handling infinite things!
INTO JAPANESE
積分計算の基本的な考え方は、曲線の下の面積を見つけることです。正確に見つけるには、領域を無限に小さい幅の無限の長方形に分割し、領域を一緒に追加します。計算は無限のものを扱うのに最適です!
BACK INTO ENGLISH
The basic idea of integral calculation is to find the area under the curve. To find it accurately, divide the region into an infinite rectangle of infinitely small width and add the regions together. Calculations are great for handling infinite things!
INTO JAPANESE
積分計算の基本的な考え方は、曲線の下の面積を見つけることです。正確に見つけるには、領域を無限に小さい幅の無限の長方形に分割し、領域を一緒に追加します。計算は無限のものを扱うのに最適です!
BACK INTO ENGLISH
The basic idea of integral calculation is to find the area under the curve. To find it accurately, divide the region into an infinite rectangle of infinitely small width and add the regions together. Calculations are great for handling infinite things!
Well done, yes, well done!