Translated Labs

YOU SAID:

In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices. Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane. Hence planar hyperbolic triangles also describe triangles possible in any higher dimension of hyperbolic spaces.

INTO JAPANESE

双曲幾何学では、双曲三角形は双曲平面の三角形です。これは、辺またはエッジと呼ばれる3つの線分と、角度または頂点と呼ばれる3つの点で構成されます。 ユークリッドの場合と同様に、任意の次元の双曲空間の3つの点は常に同じ平面上にあります。したがって、平面双曲三角形も

BACK INTO ENGLISH

In hyperbolic geometry, a hyperbolic triangle is a triangle on a hyperbolic plane. It consists of three line segments called edges or edges and three points called angles or vertices. As with Euclid, the three points in hyperbolic space of any dimension are always on the same plane. But

INTO JAPANESE

双曲幾何学では、双曲三角形は双曲平面上の三角形です。これは、エッジまたはエッジと呼ばれる3つの線分と、角度または頂点と呼ばれる3つのポイントで構成されます。 Euclidと同様に、任意の次元の双曲空間の3つの点は常に同じ平面上にあります。しかし

BACK INTO ENGLISH

In hyperbolic geometry, a hyperbolic triangle is a triangle on the hyperbolic plane. It consists of three line segments called edges or edges and three points called angles or vertices. Like Euclid, the three points in hyperbolic space of any dimension are always on the same plane. However

INTO JAPANESE

双曲幾何学では、双曲三角形は双曲平面上の三角形です。これは、エッジまたはエッジと呼ばれる3つの線分と、角度または頂点と呼ばれる3つのポイントで構成されます。 ユークリッドのように、任意の次元の双曲空間の3つの点は常に同じ平面上にあります。でも

BACK INTO ENGLISH

In hyperbolic geometry, a hyperbolic triangle is a triangle on the hyperbolic plane. It consists of three line segments called edges or edges and three points called angles or vertices. Like Euclid, the three points of hyperbolic space of any dimension are always on the same plane.

INTO JAPANESE

双曲幾何学では、双曲三角形は双曲平面上の三角形です。これは、エッジまたはエッジと呼ばれる3つの線分と、角度または頂点と呼ばれる3つのポイントで構成されます。 ユークリッドのように、任意の次元の双曲空間の3つの点は常に同じ平面上にあります。

BACK INTO ENGLISH

In hyperbolic geometry, a hyperbolic triangle is a triangle on the hyperbolic plane. It consists of three line segments called edges or edges and three points called angles or vertices. Like Euclid, the three points of hyperbolic space of any dimension are always on the same plane.

Equilibrium found!

This is a real translation party!

HOT PARTIES

You may want to crash these parties too

1
votes
01Feb13
1
votes
06Feb13
1
votes
30Jan13
1
votes
31Jan13
1
votes