YOU SAID:
In algebraic geometry, a line complex is a 3-fold given by the intersection of the Grassmannian G(2, 4) (embedded in projective space P^5 by Plücker coordinates) with a hypersurface?
INTO JAPANESE
代数幾何学では、線複体は、グラスマン G(2, 4) (Plücker 座標によって射影空間 P^5 に埋め込まれている) と超曲面との交点によって与えられる 3 倍ですか?
BACK INTO ENGLISH
In algebraic geometry, is the line complex the triple given by the intersection of the Grassmann G(2, 4) (embedded in the projective space P^5 by Plücker coordinates) with the hypersurface?
INTO JAPANESE
代数幾何学では、線複素数はグラスマン G(2, 4) (プラッカー座標によって射影空間 P^5 に埋め込まれている) と超曲面との交点によって与えられるトリプルですか?
BACK INTO ENGLISH
In algebraic geometry, are line complex numbers the triples given by the intersection of the Grassmann G(2, 4) (embedded in the projective space P^5 by Plucker coordinates) with the hypersurface?
INTO JAPANESE
代数幾何学では、線複素数は、グラスマン G(2, 4) (プラッカー座標によって射影空間 P^5 に埋め込まれている) と超曲面との交点によって与えられるトリプルですか?
BACK INTO ENGLISH
In algebraic geometry, are line complex numbers the triples given by the intersection of Grassmann G(2, 4) (embedded in the projective space P^5 by Plucker coordinates) with a hypersurface?
INTO JAPANESE
代数幾何学において、線複素数は、グラスマン G(2, 4) (プラッカー座標によって射影空間 P^5 に埋め込まれている) と超曲面との交点によって与えられるトリプルですか?
BACK INTO ENGLISH
In algebraic geometry, are line complex numbers the triples given by the intersection of Grassmann G(2, 4) (embedded in the projective space P^5 by Plucker coordinates) with a hypersurface?
That didn't even make that much sense in English.