YOU SAID:
If your function has two real-valued variables, view the domain as a set of ordered pairs. If there are no restrictions on the domain you can think of every point on the x-y plane as a unique input. After all, couldn't f(1, 2) and f(1,3) be different?
INTO JAPANESE
関数に 2 つの実数値変数がある場合は、ドメインを順序付きペアのセットと見なします。ドメインに制限がない場合は、xy 平面上のすべての点を一意の入力と考えることができます。結局のところ、f(1, 2) と f(1,3) は異なるものではないでしょうか?
BACK INTO ENGLISH
If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is unrestricted, then every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?
INTO JAPANESE
関数に 2 つの実数値変数がある場合、ドメインを順序付きペアのセットとみなしてください。ドメインが制限されていない場合、xy 平面上のすべての点を一意の入力とみなすことができます。結局のところ、f(1, 2) と f(1,3) は別のものではないでしょうか?
BACK INTO ENGLISH
If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is not restricted, every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?
INTO JAPANESE
関数に 2 つの実数値変数がある場合、ドメインを順序付きペアのセットとみなしてください。ドメインが制限されていない場合、xy 平面上のすべての点を一意の入力とみなすことができます。結局のところ、f(1, 2) と f(1,3) は別のものではないでしょうか?
BACK INTO ENGLISH
If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is not restricted, every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?
Yes! You've got it man! You've got it