Translated Labs

YOU SAID:

If your function has two real-valued variables, view the domain as a set of ordered pairs. If there are no restrictions on the domain you can think of every point on the x-y plane as a unique input. After all, couldn't f(1, 2) and f(1,3) be different?

INTO JAPANESE

関数に 2 つの実数値変数がある場合は、ドメインを順序付きペアのセットと見なします。ドメインに制限がない場合は、xy 平面上のすべての点を一意の入力と考えることができます。結局のところ、f(1, 2) と f(1,3) は異なるものではないでしょうか?

BACK INTO ENGLISH

If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is unrestricted, then every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?

INTO JAPANESE

関数に 2 つの実数値変数がある場合、ドメインを順序付きペアのセットとみなしてください。ドメインが制限されていない場合、xy 平面上のすべての点を一意の入力とみなすことができます。結局のところ、f(1, 2) と f(1,3) は別のものではないでしょうか?

BACK INTO ENGLISH

If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is not restricted, every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?

INTO JAPANESE

関数に 2 つの実数値変数がある場合、ドメインを順序付きペアのセットとみなしてください。ドメインが制限されていない場合、xy 平面上のすべての点を一意の入力とみなすことができます。結局のところ、f(1, 2) と f(1,3) は別のものではないでしょうか?

BACK INTO ENGLISH

If your function has two real-valued variables, consider the domain as a set of ordered pairs. If the domain is not restricted, every point on the xy plane can be considered a unique input. After all, aren't f(1, 2) and f(1,3) different things?

Equilibrium found!

Yes! You've got it man! You've got it

HOT PARTIES

You may want to crash these parties too

1
votes