YOU SAID:
A second order nonhomogeneous partial differential differential equation has a solution space proportional to its highest order, which guarantees a select set of eigenvalues that relate it's boundary conditions to a standard eigenfunction
INTO JAPANESE
2 次の非同次偏微分方程式には、最高次数に比例する解空間があり、境界条件を標準固有関数に関連付ける固有値の選択セットが保証されます。
BACK INTO ENGLISH
Second-order inhomogeneous PDEs have a solution space proportional to the highest order, guaranteeing a selected set of eigenvalues that relate the boundary conditions to the standard eigenfunctions.
INTO JAPANESE
2 次の不均一偏微分方程式は、最高次数に比例する解空間を持ち、境界条件を標準の固有関数に関連付ける固有値の選択されたセットを保証します。
BACK INTO ENGLISH
Second-order inhomogeneous PDEs have a solution space proportional to the highest order and guarantee a chosen set of eigenvalues that relate boundary conditions to standard eigenfunctions.
INTO JAPANESE
2 次の非同次偏微分方程式は、最高次数に比例する解空間を持ち、境界条件を標準の固有関数に関連付ける固有値の選択されたセットを保証します。
BACK INTO ENGLISH
Second-order inhomogeneous PDEs have a solution space proportional to the highest order and guarantee a selected set of eigenvalues that relate the boundary conditions to standard eigenfunctions.
INTO JAPANESE
2 次の非同次偏微分方程式は、最高次数に比例する解空間を持ち、境界条件を標準の固有関数に関連付ける固有値の選択されたセットを保証します。
BACK INTO ENGLISH
Second-order inhomogeneous PDEs have a solution space proportional to the highest order and guarantee a selected set of eigenvalues that relate boundary conditions to standard eigenfunctions.
INTO JAPANESE
2 次の非同次偏微分方程式は、最高次数に比例する解空間を持ち、境界条件を標準の固有関数に関連付ける固有値の選択されたセットを保証します。
BACK INTO ENGLISH
Second-order inhomogeneous PDEs have a solution space proportional to the highest order and guarantee a selected set of eigenvalues that relate boundary conditions to standard eigenfunctions.
You love that! Don't you?